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Abstract
Infective endocarditis (IE) is a life-threatening condition frequently associated with endocardial lesions known as 
vegetations. Detection and characterization of these lesions are critical for a proper diagnosis and management of the 
disease according to the current standard practice, but current human analysis techniques present severe limitations such 
as very basic set of measurements and high inter-operator variability. This is a retrospective observational study across 7 
hospitals with 329 IE patients. An AI-based model was trained to detect vegetations in transesophageal echocardiographic 
(TEE) images. We measured the accuracy of the system both in terms of vegetation detection at the frame level (i.e., 
answering the question “is there any vegetation in this image and, if so, where is it?”) and vegetation diagnosis at the 
patient level (i.e., “does this patient have a vegetation?”). Two different architectures, YOLO and DETR, were evaluated 
within the AI-based model framework, and a comparative analysis of their performance was performed. The model 
exhibited strong diagnostic capability, achieving an area under the receiver-operating characteristic curve (AUROC) 
of 0.91 (average positive predictive value = 0.81, true positive rate = 0.83). Vegetation detection at the frame level also 
achieved promising performance metrics (positive predictive value = 0.83, true positive rate = 0.75). The algorithm 
achieved high-performance metrics detecting vegetations and identifying patients with vegetations, which can facilitate 
and accelerate IE diagnosis by non-expert cardiologists.
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Abbreviations
IE	� Infective endocarditis
TEE	� Transesophageal echocardiographic
CNN	� Convolutional neural networks
AI	� Artificial intelligence
IOU	� Intersection-over-Union
AUC​	� Area under the receiver-operating characteristic 

curve
ROC	� Receiver-operating characteristic

Introduction

Left-sided infective endocarditis (IE) is a serious, life-
threatening condition that involves infection of the endocardial 
surface, potentially leading to the formation of heart valve 
vegetations, which are mobile structures composed of platelets, 
fibrin, microbial microcolonies, and inflammatory cells. Robust 
evidence supports a strong correlation between the presence and 
characteristics of vegetations and clinical outcomes, particularly 
due to their close association with serious complications such as 
systemic or pulmonary embolism.[1–6]

Therefore, diagnosis and characterization of vegetations are 
essential components of disease management. The presence 
of vegetations is not only a major criterion for the diagnosis 
of infective endocarditis,[7] but also a predictor of poor 
prognosis [8]: vegetations are more frequent in patients with 
definitive endocarditis compared with those with possible 
endocarditis, and the former have higher in-hospital mortality.
[9] Current standard practice relies on transesophageal 
echocardiography (TEE) as the primary imaging modality 
for their detection, and parameters such as size, mobility, 
and location are considered for risk evaluation [1]. Searching 
for vegetations is mandatory in bloodstream infections of 
Enterococcus faecalis, Staphylococcus aureus, and possibly 
Streptococci, given the high probability of IE.[10] Most 
importantly, vegetation size, defined as the maximal length 
of the vegetation in a 2D cine loop, is a particularly relevant 
metric used to guide surgical indication.[1, 2, 11]

However, current vegetation assessment techniques 
have been shown to have limited reliability: surgery does 
not appear to improve prognosis in patients with large veg-
etations as the sole risk factor,[12] and significant inter-
observer variability exists in measuring vegetation size (sur-
gical indication may change in more than 40% of patients 
depending on the operator performing the assessment). [13].

In this scenario, there is a need for more advanced and 
reproducible vegetation evaluation methods to improve risk 
prediction, disease management, and surgery indication. 
Several recent works apply artificial intelligence (AI) 
techniques to this end.[14–19] However, most of them are 
models aimed at estimating mortality risk under specific 

conditions (SABIER score for patients with Staphylococcus 
aureus bacteremia [16], SYSUPMIE for early mortality after 
surgery [17], with a remarkable accuracy of AUC = 0.81) and 
only employ structured clinical features, without direct analysis 
of the image itself. Other works aim at studying new molecular 
biomarkers or proteomics, yielding very good diagnostic 
results but limited prognostic power (sensitivity = 0.78 for 
predicting mortality[18] and AUC = 0.83 for identifying 
patients in NYHA IV).[19] However, none of these approaches 
considers advanced features of vegetations, while it is already 
known that they have a significant impact on embolic risk (for 
instance, systemic embolisms were more frequent in filiform 
and raceme-shaped vegetation than in sessile vegetation).[20].

In this field, some early works have begun exploring the 
application of AI to process raw echocardiographic imaging 
of vegetations. In medical imaging, neural networks have been 
successfully employed over cardiac imaging data [21–24], 
and particularly echocardiography [25], for autonomous 
segmentation, measurement, diagnosis, optimizing imaging 
protocols, mortality/event prediction, and clinical risk 
stratification. In the field of TEE, AI has been employed to 
detect and track meaningful structures (most notably the mitral 
annulus).[26–29] And in endocarditis, in particular, Esmaely 
et al.[30] have applied simple machine learning models to 
manually segmented valve contours, achieving an AUC of 
0.88 for identifying valves with vegetations. However, in their 
work, an expert physician is still required to manually analyze, 
locate, and segment the contour of the vegetation.

The purpose of the present study is to implement an AI 
model to automatically detect vegetations in TEE loops of 
patients with left-sided IE. This system could be directly 
employed to assist in the assessment of vegetation presence, 
particularly in low-volume centers where physicians may be 
less familiar with the diagnostic work-up when endocarditis 
is suspected.[31] But, more importantly, it may serve as the 
foundation for future advanced image-based characterization 
of vegetations, computed from programmatically derived 
(i.e., operator-independent) parameters such as size, velocity, 
trajectory, and morphological features. These quantifiable 
metrics could ultimately enable highly accurate risk 
stratification and support personalized clinical decision-making.

Material and Methods

A. Data Collection and Curation

A database was developed compiling data from 329 
retrospective patients diagnosed with left-sided IE between 
2014 and 2025 in the seven participating centers applying 
the following inclusion criteria: (1) definitive diagnosis of 
IE based on the modified Duke criteria; (2) left-sided IE;  
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(3) availability of TEE images in standard DICOM format 
with visible vegetations. Collected data included standard 
DICOM TEE images and clinical variables from the 
endocarditis episode from admission to discharge. All clinical 
data and imaging were acquired according to standard-of-care 
procedures. Table 1 summarizes the baseline clinical and 
demographic characteristics of the study population.

Between 4 and 12 cine loops were obtained from each 
patient, each one comprising between 15 and 203 frames on 
standard 2D echocardiographic longitudinal or three-cham-
ber views (excluding x-plane and color Doppler) captured in 
standard-of-care exams (no specific acquisition protocol). We 
used all available loops from each patient to avoid bias from 
arbitrary selection. Poor image quality on the TEE was not 
an exclusion criterion. The selected cine loops were cleaned 
with basic pre-processing algorithms to eliminate informa-
tion outside the ultrasound cone, erase labels and annotations, 
normalize intensity, and reduce noise.

In addition, for validation purposes, a control dataset was 
compiled with TEE images of patients without vegetations. 
This dataset includes 70 randomly selected individuals who 
underwent a TEE within the last 5 years in the coordinating 
center and neither had IE nor were suspected of having it.

B. Data Labeling

Once the dataset is curated, the next step involves the precise 
labeling of vegetations within each echocardiographic 
video. This labeling was performed using the Visual Object 

Tagging Tool (VoTT), an open-source annotation tool that 
facilitates frame-by-frame labeling of objects within videos.

Each frame of the echocardiographic cine loops was 
examined, and the vegetation was marked with bounding 
boxes as shown in Fig. 1. Two cardiac imaging experts 
carried out the annotation process to ensure accuracy and 
consistency. This comprehensive annotation strategy was 
selected to allow the system to learn relevant imaging pat-
terns that replicate the typical behavior of imaging experts. 
A total of 50,172 vegetations were manually marked in 
167,369 frames extracted from 2517 cine loops belong-
ing to 329 patients. It is important to note that the manual 
labels used for model training and validation were indeed 
performed by experts utilizing all available information 
(clinical data and multiple TEE views per patient).

C. Model Description

Two non-pretrained, state-of-the-art architectures were 
evaluated for the model implementation: a YOLOv12[32] 
neural network and a RT-DERT[33] neural network. Both 
architectures were configured to take a still echocardio-
graphic image (640 × 640 pixels) as input and to output the 
coordinates of bounding boxes of detected vegetations, if 
any. For each detected vegetation, the model estimates a con-
fidence value between 0 and 1: A higher confidence value 
indicates a greater likelihood that the marked structure is a 
true vegetation.

D. Model Training

To implement and validate the model, the sample must be 
divided into three separate datasets: training (for model imple-
mentation), model optimization, and test (for performance 
measurements over a completely independent sample). The 

Table 1   Baseline characteristics of patients with IE. *Seventeen 
percent of patients had surgical indication but did not receive the 
intervention

Age 67.6 ± 12.9

Male 239 (73%)
Diabetes mellitus 106 (32.3%)
Previous renal failure 64 (19.6%)
Prior vascular disease 71 (25%)
Immunosuppression 29 (8.9%)
Location
Mitral
Aortic
Both

134 (40.7%)
143 (43.5%)
52 (15.8%)

Prosthetic
Mechanical
Biological

18 (5.5%)
61 (18.5%)

Microorganism
Staph. aureus
Staph. coagulase negative
Strep. Viridans

53 (18.1%)
23 (7.9%)
29 (9.9%)

Outcome
Surgery*

In-hospital mortality

167 (52%)
81 (24.8%)

Fig. 1   Annotated vegetation in a preprocessed frame of an echocar-
diogram from a patient diagnosed with endocarditis
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dataset was partitioned on a per-patient basis, ensuring that all 
images from a given patient were confined to a single subset. 
Therefore, all videos from a single patient are assigned to 
the same set. This approach was adopted instead of splitting 
by loop or frame in order to prevent data leakage. Including 
images from the same patient in both sets could allow the 
model to memorize patient-specific features, thereby compro-
mising its ability to generalize. Such leakage would likely lead 
to a significant overestimation of model performance during 
validation.

In order to mitigate patient selection bias due to dataset 
splitting, ten different random splits of the dataset into train-
ing, model optimization and test were performed, and results 
averaged across the splits.

The training set was enhanced using standard data aug-
mentation techniques, such as rotation, scaling, inversion, and 
mosaic data augmentation[34] to increase spatial variability in 
the dataset and improve the robustness of the trained model. 
Figure 2 shows an example of the different versions of an 
input image generated during this data augmentation process.

Fig. 2   Example of synthetic training samples produced by data augmentation from a single image
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E. Validation

We measured the accuracy of the system both in terms of 
vegetation detection at the frame level (i.e., answering the 
question “is there any vegetation in this image and, if so, 
where is it?”) and vegetation diagnosis at patient level (i.e., 
“does this patient have a vegetation?”).

At the frame level, standard performance metrics for 
automated object detection were computed. A detection is 
considered a true positive if its bounding box is at least 50% 
overlapped with the manually labeled vegetation bounding 
box, or a false positive otherwise. Overlapping is measured 
in terms of Intersection-over-Union (IoU), explained in sup-
plementary data section d.

To measure the diagnostic accuracy at the patient level, 
we implemented a simple vegetation diagnosing system to 
integrate vegetation detection results along all frames of 
each cine loop. For each loop, the ratio of frames with a 
positive vegetation detection vs. total number of frames in 
the sequence is computed. Low ratios normally mean spuri-
ous wrong detections in isolated frames, while high ratios 
are consistent detections across the entire video sequence. 
The computed ratio is the output of the diagnostic system 
and could be loosely understood as the probability of the 
patient having a vegetation: if the ratio is over a configur-
able threshold, the patient is considered positive. While 
simple, this approach builds on the good accuracy of the 
frame-level detection and provides robust generalizability 
across heterogeneous scenarios, considering the variability 
in both vegetation attachment sites and mobility patterns. 
Other specific approaches such as restricting the analysis to 
the systolic phase (closed valve) may seem advantageous, 
but could lose generalizability. This closed valve strategy for 
instance would be less effective in prosthetic valves, where 
vegetations are frequently anchored to the annulus and thus 

exhibit reduced displacement, making their detection more 
challenging.

The diagnostic accuracy of this system is validated over a 
sample population of 130 patients, including the test dataset 
of each split (60 positive cases) and the control dataset (70 
negative cases) (Fig. 3). Receiver-operating characteristic 
(ROC) curves for the diagnostic system have been computed 
for each split.

Results

Our model demonstrated strong diagnostic performance 
with both architectures in discriminating between patients 
with and without vegetations when applied to cine loops. 
The YOLOv12-based model achieved an average area 
under the ROC curve (AUROC) of 0.91 (positive predictive 
value = 0.81, true positive rate = 0.83), while the RT-DETR-
based model achieved an average AUROC of 0.9 (posi-
tive predictive value = 0.81, true positive rate = 0.79). The 
YOLOv12 architecture contained 272 layers and 2,568,243 
parameters, while the RT-DETR model was ten times more 
complex with 32,808,131 parameters across 457 layers. 
Some specific examples of operation are illustrated in Fig. 4.

For vegetation detection on a per-frame basis, the 
YOLOv12 architecture achieved a mean positive predictive 
value of 0.83 (indicating that 83% of detected vegetations 
were correct) and a mean true positive rate of 0.75 (indicat-
ing that 75% of all vegetations were successfully detected 
and localized), both with a standard deviation below 0.04, 
reflecting strong convergence of the model during training. 
The RT-DETR architecture achieved a mean positive predic-
tive value of 0.84 and a mean true positive rate of 0.76, both 
with a standard deviation below 0.04, likewise indicating 
robust convergence.

Fig. 3   Dataset split and popula-
tion size through training and 
validation
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Detailed comparative results for each split are provided in 
supplementary data: Tables 3–6. Specifically, Table 3 shows 
standard metrics to characterize how the detections overlap 
with the manual label gold standard, in order to evaluate how 
well the model not only finds vegetation but also precisely 
determines its size and position. Figure 5 shows some exam-
ples of specific cases.

Discussion

This study introduces an AI model developed to analyze 
TEE image sequences for the detection of vegetations asso-
ciated with left-sided infective endocarditis. Two state-
of-the-art architectures, YOLOv12 and RT-DETR, were 
compared. The models’ performance was validated at the 
frame level using standard object detection metrics, as well 
as its utility as a diagnostic tool for discriminating between 
patients with and without vegetations. Although they are 
conceptually and architecturally different, their results in this 
scenario have been similar. The RT-DETR model is however 

more complex, with about ten times more parameters than 
YOLOv12, which results in longer training and operation 
times.

While scores might not immediately suggest human-expert-
level performance, it is crucial to consider the significant 
difference in available information between an expert human 
annotator and our proposed system. Expert clinicians typically 
leverage a wealth of additional data for identifying vegetations, 
including multiple echocardiographic views, real-time dynamic 
assessment across cine loops, and comprehensive patient 
clinical information. In contrast, our system operates solely on 
the information contained within each individual image frame.

To the best of our knowledge, there is no similar model 
published in the literature, so it is not possible to directly 
compare our results to previous state of the art. The most 
similar work is the vegetation contour discriminator of 
Esmaely et al.[30], with an AUC of 0.88 for identification of 
vegetations in manually extracted contours of heart valves. 
Our system shows a slightly superior AUC of 0.91, and iden-
tifies and locates vegetations over raw echocardiographic 
images without human intervention.

Fig. 4   Three examples (A, B, C) of the vegetation diagnosis test 
over cine loops. Patient A is an endocarditis with a vegetation on the 
mitral valve; the detector is correct in all five frames presented, prop-
erly locating the vegetation in the four frames where it is visible and 
not detecting anything in the frame where it is not present. Patient B 
is a case without infective endocarditis, correctly identified in four 
frames, with only one frame in the loop mistakenly interpreted as 

showing a vegetation. Patient C is a prolapse in P1 with a ruptured 
secondary chord misclassified as a vegetation in the last three frames 
of the loop. Setting up the vegetation diagnosis system with a thresh-
old of 80% (at least four out of five frames to consider a positive) 
would result in Patient A being a true positive, patient B a true nega-
tive, and patient C a true negative
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The automated vegetation detection system proposed in 
this work addresses the critical need for consistent and reliable 
vegetation characterization in the diagnosis of IE. Given the 
high mortality rate and severe complications associated 
with IE, such as embolic events, the ability to accurately 
and consistently detect vegetations is crucial. Furthermore, 
the automated detection of vegetations is a step towards 
automatically computing vegetation measurements, currently 
essential for risk stratification and therapeutic planning. 
Accurate measurement of vegetation size can help predict 
embolic events, as larger vegetations are associated with a 
higher risk.[5, 6] In fact, some of the indications to perform 
surgery by the international guidelines[1, 2] rely on the size of 
the vegetation and provide a very specific cut-off above which 
a patient must be sent to surgery.

Our proposed system presents several advantages: first, it 
has the potential to eliminate both intra- and inter-operator 

variability in vegetation measurement, thereby enabling a 
standardized assessment and supporting more consistent 
clinical decision-making. Second, by providing objective 
and reproducible measurements, the algorithm has the 
potential to become the basis for future updates to clinical 
guidelines, allowing cut-off values for management decisions 
to be based on standardized and quantifiable parameters. 
Third, this system may establish the foundation for a novel 
advanced vegetation characterization, incorporating features 
such as motion dynamics (e.g., acceleration, velocity and 
trajectory) and morphological features (shape, density and 
others) that may offer new insights into disease behavior and 
prognosis. And fourth, given its diagnostic performance, the 
tool is suitable for integration into clinical workflows as a 
decision support system, particularly in smaller healthcare 
centers and other settings with limited access to expert 
imaging interpretation.

Fig. 5   Three (A, B, C) specific 
examples of vegetation detec-
tion over the test group. Left 
images are manually labeled 
ground truth boxes, and right 
images are detections identi-
fied by the AI model, includ-
ing its associated confidence 
estimation. Example A shows 
a detection with > 95% overlap. 
Example B shows two detec-
tions in a frame where there 
is only one vegetation: one of 
them is a false positive if the 
confidence threshold is under 
0.4. Example C shows another 
potential false positive: a wrong 
detection where no vegetation 
is present
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The proposed system is designed to detect vegetations at 
the frame level; however, to determine whether a suspicious 
mass is a vegetation, clinicians usually review the entire 
video to assess its motion, which makes it reasonable 
to expect that an AI model incorporating a temporal 
component could perform better. This approach would face 
several challenges. Labeling becomes extremely demanding 
in models that require all frames containing the object to 
be annotated, as unannotated frames may be interpreted as 
negative cases. This is not only an exponential increase in 
the labeling workload, but often infeasible, since during 
parts of the cardiac cycle when vegetations are partially 
obscured, it is difficult to distinguish them from cardiac 
valves or abscesses. In addition, it would also imply a risk 
of underfitting, since the complexity of the input would 
increase (video sequence vs. frame) while the number of 
available samples would decrease exponentially (while 
we could extract 50,172 vegetation frames from our 329 
patients, only 2517 cine loops would be available for video 
training).

Therefore, our model was designed to detect vegetations 
on a frame-by-frame basis, followed by a temporal evaluation 
of these detections, providing a more efficient and practical 
solution.

The number of frames varies substantially across stud-
ies, such that patients with fewer frames are more suscep-
tible to false detections, as each misclassification exerts a 
disproportionately greater influence on the overall results. 
This limitation is particularly evident in older ultrasound 
examinations acquired with earlier-generation systems, 
which are typically characterized by lower temporal reso-
lution and reduced image quality. Despite these consid-
erations, no exclusion criteria based on frame count or 
number of loops were imposed, given that short loops are 
frequently observed in routine clinical practice.

A key limitation of the current system is that it 
is designed to operate within a clinical context of 
suspected endocarditis. Consequently, the model was 
not specifically trained to differentiate vegetations from 
other intracardiac masses. This means anomalies such 
as Lambl’s excrescences, thrombus, or ruptured chordae 
tendineae may currently be misidentified as vegetations. 
Future developments should address this by extending the 
training dataset to include a broader range of intracardiac 
formations, enabling the system to accurately distinguish 
these structures and expand its clinical applicability. Other 
limitations include the exclusion of right-sided IE from 
the population and the relatively small number of patients 
with prosthetic valves, particularly mechanical. The system 
would need to be trained with additional datasets focused 
on these populations before being fully applicable in these 
contexts, particularly in the latter case since artifacts caused 
by the prosthesis may confound the algorithm.

Conclusions

The results of this study demonstrate the effectiveness of 
a new automated vegetation detection algorithm in TEE 
images. The algorithm achieved high-performance metrics 
in detecting and locating vegetations down to the frame 
level and diagnosing the presence of vegetations in TEE 
video sequences at the patient level. This system could be 
directly employed to assist in the assessment of vegetation 
presence, but, more importantly, it may serve as the 
foundation for future advanced image-based characterization 
of vegetations, computed from programmatically derived (i.e., 
operator-independent) parameters such as motion velocity, 
trajectory, and morphological features. This can be extremely 
useful to reduce inter-operator variability in the vegetation 
measurement task, often subject to significant variability 
among operators, and to identify new advanced imaging 
biomarkers for personalized risk characterization and disease 
management.
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