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Abstract

Infective endocarditis (IE) is a life-threatening condition frequently associated with endocardial lesions known as
vegetations. Detection and characterization of these lesions are critical for a proper diagnosis and management of the
disease according to the current standard practice, but current human analysis techniques present severe limitations such
as very basic set of measurements and high inter-operator variability. This is a retrospective observational study across 7
hospitals with 329 IE patients. An Al-based model was trained to detect vegetations in transesophageal echocardiographic
(TEE) images. We measured the accuracy of the system both in terms of vegetation detection at the frame level (i.e.,
answering the question “is there any vegetation in this image and, if so, where is it?”’) and vegetation diagnosis at the
patient level (i.e., “does this patient have a vegetation?”). Two different architectures, YOLO and DETR, were evaluated
within the Al-based model framework, and a comparative analysis of their performance was performed. The model
exhibited strong diagnostic capability, achieving an area under the receiver-operating characteristic curve (AUROC)
of 0.91 (average positive predictive value =0.81, true positive rate =0.83). Vegetation detection at the frame level also
achieved promising performance metrics (positive predictive value =0.83, true positive rate =0.75). The algorithm
achieved high-performance metrics detecting vegetations and identifying patients with vegetations, which can facilitate
and accelerate IE diagnosis by non-expert cardiologists.
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Abbreviations
1IE Infective endocarditis
TEE Transesophageal echocardiographic

CNN Convolutional neural networks
Al Artificial intelligence

IOU Intersection-over-Union

AUC  Area under the receiver-operating characteristic
curve

ROC Receiver-operating characteristic

Introduction

Left-sided infective endocarditis (IE) is a serious, life-
threatening condition that involves infection of the endocardial
surface, potentially leading to the formation of heart valve
vegetations, which are mobile structures composed of platelets,
fibrin, microbial microcolonies, and inflammatory cells. Robust
evidence supports a strong correlation between the presence and
characteristics of vegetations and clinical outcomes, particularly
due to their close association with serious complications such as
systemic or pulmonary embolism.[1-6]

Therefore, diagnosis and characterization of vegetations are
essential components of disease management. The presence
of vegetations is not only a major criterion for the diagnosis
of infective endocarditis,[7] but also a predictor of poor
prognosis [8]: vegetations are more frequent in patients with
definitive endocarditis compared with those with possible
endocarditis, and the former have higher in-hospital mortality.
[9] Current standard practice relies on transesophageal
echocardiography (TEE) as the primary imaging modality
for their detection, and parameters such as size, mobility,
and location are considered for risk evaluation [1]. Searching
for vegetations is mandatory in bloodstream infections of
Enterococcus faecalis, Staphylococcus aureus, and possibly
Streptococci, given the high probability of IE.[10] Most
importantly, vegetation size, defined as the maximal length
of the vegetation in a 2D cine loop, is a particularly relevant
metric used to guide surgical indication.[1, 2, 11]

However, current vegetation assessment techniques
have been shown to have limited reliability: surgery does
not appear to improve prognosis in patients with large veg-
etations as the sole risk factor,[12] and significant inter-
observer variability exists in measuring vegetation size (sur-
gical indication may change in more than 40% of patients
depending on the operator performing the assessment). [13].

In this scenario, there is a need for more advanced and
reproducible vegetation evaluation methods to improve risk
prediction, disease management, and surgery indication.
Several recent works apply artificial intelligence (Al)
techniques to this end.[14-19] However, most of them are
models aimed at estimating mortality risk under specific
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conditions (SABIER score for patients with Staphylococcus
aureus bacteremia [16], SYSUPMIE for early mortality after
surgery [17], with a remarkable accuracy of AUC=0.81) and
only employ structured clinical features, without direct analysis
of the image itself. Other works aim at studying new molecular
biomarkers or proteomics, yielding very good diagnostic
results but limited prognostic power (sensitivity =0.78 for
predicting mortality[18] and AUC=0.83 for identifying
patients in NYHA IV).[19] However, none of these approaches
considers advanced features of vegetations, while it is already
known that they have a significant impact on embolic risk (for
instance, systemic embolisms were more frequent in filiform
and raceme-shaped vegetation than in sessile vegetation).[20].

In this field, some early works have begun exploring the
application of Al to process raw echocardiographic imaging
of vegetations. In medical imaging, neural networks have been
successfully employed over cardiac imaging data [21-24],
and particularly echocardiography [25], for autonomous
segmentation, measurement, diagnosis, optimizing imaging
protocols, mortality/event prediction, and clinical risk
stratification. In the field of TEE, AI has been employed to
detect and track meaningful structures (most notably the mitral
annulus).[26-29] And in endocarditis, in particular, Esmaely
et al.[30] have applied simple machine learning models to
manually segmented valve contours, achieving an AUC of
0.88 for identifying valves with vegetations. However, in their
work, an expert physician is still required to manually analyze,
locate, and segment the contour of the vegetation.

The purpose of the present study is to implement an Al
model to automatically detect vegetations in TEE loops of
patients with left-sided IE. This system could be directly
employed to assist in the assessment of vegetation presence,
particularly in low-volume centers where physicians may be
less familiar with the diagnostic work-up when endocarditis
is suspected.[31] But, more importantly, it may serve as the
foundation for future advanced image-based characterization
of vegetations, computed from programmatically derived
(i.e., operator-independent) parameters such as size, velocity,
trajectory, and morphological features. These quantifiable
metrics could ultimately enable highly accurate risk
stratification and support personalized clinical decision-making.

Material and Methods
A. Data Collection and Curation

A database was developed compiling data from 329
retrospective patients diagnosed with left-sided IE between
2014 and 2025 in the seven participating centers applying
the following inclusion criteria: (1) definitive diagnosis of
IE based on the modified Duke criteria; (2) left-sided IE;
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(3) availability of TEE images in standard DICOM format
with visible vegetations. Collected data included standard
DICOM TEE images and clinical variables from the
endocarditis episode from admission to discharge. All clinical
data and imaging were acquired according to standard-of-care
procedures. Table 1 summarizes the baseline clinical and
demographic characteristics of the study population.

Between 4 and 12 cine loops were obtained from each
patient, each one comprising between 15 and 203 frames on
standard 2D echocardiographic longitudinal or three-cham-
ber views (excluding x-plane and color Doppler) captured in
standard-of-care exams (no specific acquisition protocol). We
used all available loops from each patient to avoid bias from
arbitrary selection. Poor image quality on the TEE was not
an exclusion criterion. The selected cine loops were cleaned
with basic pre-processing algorithms to eliminate informa-
tion outside the ultrasound cone, erase labels and annotations,
normalize intensity, and reduce noise.

In addition, for validation purposes, a control dataset was
compiled with TEE images of patients without vegetations.
This dataset includes 70 randomly selected individuals who
underwent a TEE within the last 5 years in the coordinating
center and neither had IE nor were suspected of having it.

B. Data Labeling

Once the dataset is curated, the next step involves the precise
labeling of vegetations within each echocardiographic
video. This labeling was performed using the Visual Object

Table 1 Baseline characteristics of patients with IE. *Seventeen
percent of patients had surgical indication but did not receive the
intervention

Age 67.6+12.9
Male 239 (73%)
Diabetes mellitus 106 (32.3%)
Previous renal failure 64 (19.6%)
Prior vascular disease 71 (25%)
Immunosuppression 29 (8.9%)
Location 134 (40.7%)
Mitral 143 (43.5%)
Aortic 52 (15.8%)
Both

Prosthetic 18 (5.5%)
Mechanical 61 (18.5%)
Biological

Microorganism 53 (18.1%)
Staph. aureus 23 (7.9%)
Staph. coagulase negative 29 (9.9%)
Strep. Viridans

Outcome 167 (52%)
Surgery” 81 (24.8%)

In-hospital mortality

Tagging Tool (VoIT), an open-source annotation tool that
facilitates frame-by-frame labeling of objects within videos.

Each frame of the echocardiographic cine loops was
examined, and the vegetation was marked with bounding
boxes as shown in Fig. 1. Two cardiac imaging experts
carried out the annotation process to ensure accuracy and
consistency. This comprehensive annotation strategy was
selected to allow the system to learn relevant imaging pat-
terns that replicate the typical behavior of imaging experts.
A total of 50,172 vegetations were manually marked in
167,369 frames extracted from 2517 cine loops belong-
ing to 329 patients. It is important to note that the manual
labels used for model training and validation were indeed
performed by experts utilizing all available information
(clinical data and multiple TEE views per patient).

C. Model Description

Two non-pretrained, state-of-the-art architectures were
evaluated for the model implementation: a YOLOv12[32]
neural network and a RT-DERT|[33] neural network. Both
architectures were configured to take a still echocardio-
graphic image (640 x 640 pixels) as input and to output the
coordinates of bounding boxes of detected vegetations, if
any. For each detected vegetation, the model estimates a con-
fidence value between 0 and 1: A higher confidence value
indicates a greater likelihood that the marked structure is a
true vegetation.

D. Model Training

To implement and validate the model, the sample must be
divided into three separate datasets: training (for model imple-
mentation), model optimization, and test (for performance
measurements over a completely independent sample). The

VEGETATION

Fig.1 Annotated vegetation in a preprocessed frame of an echocar-
diogram from a patient diagnosed with endocarditis
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dataset was partitioned on a per-patient basis, ensuring that all
images from a given patient were confined to a single subset.
Therefore, all videos from a single patient are assigned to
the same set. This approach was adopted instead of splitting
by loop or frame in order to prevent data leakage. Including
images from the same patient in both sets could allow the
model to memorize patient-specific features, thereby compro-
mising its ability to generalize. Such leakage would likely lead
to a significant overestimation of model performance during
validation.

In order to mitigate patient selection bias due to dataset
splitting, ten different random splits of the dataset into train-
ing, model optimization and test were performed, and results
averaged across the splits.

The training set was enhanced using standard data aug-
mentation techniques, such as rotation, scaling, inversion, and
mosaic data augmentation[34] to increase spatial variability in
the dataset and improve the robustness of the trained model.
Figure 2 shows an example of the different versions of an
input image generated during this data augmentation process.

Fig.2 Example of synthetic training samples produced by data augmentation from a single image
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E. Validation

We measured the accuracy of the system both in terms of
vegetation detection at the frame level (i.e., answering the
question “is there any vegetation in this image and, if so,
where is it?”’) and vegetation diagnosis at patient level (i.e.,
“does this patient have a vegetation?”).

At the frame level, standard performance metrics for
automated object detection were computed. A detection is
considered a true positive if its bounding box is at least 50%
overlapped with the manually labeled vegetation bounding
box, or a false positive otherwise. Overlapping is measured
in terms of Intersection-over-Union (IoU), explained in sup-
plementary data section d.

To measure the diagnostic accuracy at the patient level,
we implemented a simple vegetation diagnosing system to
integrate vegetation detection results along all frames of
each cine loop. For each loop, the ratio of frames with a
positive vegetation detection vs. total number of frames in
the sequence is computed. Low ratios normally mean spuri-
ous wrong detections in isolated frames, while high ratios
are consistent detections across the entire video sequence.
The computed ratio is the output of the diagnostic system
and could be loosely understood as the probability of the
patient having a vegetation: if the ratio is over a configur-
able threshold, the patient is considered positive. While
simple, this approach builds on the good accuracy of the
frame-level detection and provides robust generalizability
across heterogeneous scenarios, considering the variability
in both vegetation attachment sites and mobility patterns.
Other specific approaches such as restricting the analysis to
the systolic phase (closed valve) may seem advantageous,
but could lose generalizability. This closed valve strategy for
instance would be less effective in prosthetic valves, where
vegetations are frequently anchored to the annulus and thus

Fig. 3 Dataset split and popula-

tion size through training and 329 PATIENTS

exhibit reduced displacement, making their detection more
challenging.

The diagnostic accuracy of this system is validated over a
sample population of 130 patients, including the test dataset
of each split (60 positive cases) and the control dataset (70
negative cases) (Fig. 3). Receiver-operating characteristic
(ROC) curves for the diagnostic system have been computed
for each split.

Results

Our model demonstrated strong diagnostic performance
with both architectures in discriminating between patients
with and without vegetations when applied to cine loops.
The YOLOv12-based model achieved an average area
under the ROC curve (AUROC) of 0.91 (positive predictive
value=0.81, true positive rate=0.83), while the RT-DETR-
based model achieved an average AUROC of 0.9 (posi-
tive predictive value =0.81, true positive rate =0.79). The
YOLOV12 architecture contained 272 layers and 2,568,243
parameters, while the RT-DETR model was ten times more
complex with 32,808,131 parameters across 457 layers.
Some specific examples of operation are illustrated in Fig. 4.

For vegetation detection on a per-frame basis, the
YOLOv12 architecture achieved a mean positive predictive
value of 0.83 (indicating that 83% of detected vegetations
were correct) and a mean true positive rate of 0.75 (indicat-
ing that 75% of all vegetations were successfully detected
and localized), both with a standard deviation below 0.04,
reflecting strong convergence of the model during training.
The RT-DETR architecture achieved a mean positive predic-
tive value of 0.84 and a mean true positive rate of 0.76, both
with a standard deviation below 0.04, likewise indicating
robust convergence.
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Fig.4 Three examples (A, B, C) of the vegetation diagnosis test
over cine loops. Patient A is an endocarditis with a vegetation on the
mitral valve; the detector is correct in all five frames presented, prop-
erly locating the vegetation in the four frames where it is visible and
not detecting anything in the frame where it is not present. Patient B
is a case without infective endocarditis, correctly identified in four
frames, with only one frame in the loop mistakenly interpreted as

Detailed comparative results for each split are provided in
supplementary data: Tables 3—6. Specifically, Table 3 shows
standard metrics to characterize how the detections overlap
with the manual label gold standard, in order to evaluate how
well the model not only finds vegetation but also precisely
determines its size and position. Figure 5 shows some exam-
ples of specific cases.

Discussion

This study introduces an Al model developed to analyze
TEE image sequences for the detection of vegetations asso-
ciated with left-sided infective endocarditis. Two state-
of-the-art architectures, YOLOv12 and RT-DETR, were
compared. The models’ performance was validated at the
frame level using standard object detection metrics, as well
as its utility as a diagnostic tool for discriminating between
patients with and without vegetations. Although they are
conceptually and architecturally different, their results in this
scenario have been similar. The RT-DETR model is however

@ Springer
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showing a vegetation. Patient C is a prolapse in P1 with a ruptured
secondary chord misclassified as a vegetation in the last three frames
of the loop. Setting up the vegetation diagnosis system with a thresh-
old of 80% (at least four out of five frames to consider a positive)
would result in Patient A being a true positive, patient B a true nega-
tive, and patient C a true negative

more complex, with about ten times more parameters than
YOLOV12, which results in longer training and operation
times.

While scores might not immediately suggest human-expert-
level performance, it is crucial to consider the significant
difference in available information between an expert human
annotator and our proposed system. Expert clinicians typically
leverage a wealth of additional data for identifying vegetations,
including multiple echocardiographic views, real-time dynamic
assessment across cine loops, and comprehensive patient
clinical information. In contrast, our system operates solely on
the information contained within each individual image frame.

To the best of our knowledge, there is no similar model
published in the literature, so it is not possible to directly
compare our results to previous state of the art. The most
similar work is the vegetation contour discriminator of
Esmaely et al.[30], with an AUC of 0.88 for identification of
vegetations in manually extracted contours of heart valves.
Our system shows a slightly superior AUC of 0.91, and iden-
tifies and locates vegetations over raw echocardiographic
images without human intervention.



Journal of Imaging Informatics in Medicine

Fig.5 Three (A, B, C) specific
examples of vegetation detec-
tion over the test group. Left
images are manually labeled
ground truth boxes, and right
images are detections identi-
fied by the Al model, includ-
ing its associated confidence
estimation. Example A shows
a detection with >95% overlap.
Example B shows two detec-
tions in a frame where there

is only one vegetation: one of
them is a false positive if the
confidence threshold is under
0.4. Example C shows another

potential false positive: a wrong B
detection where no vegetation
is present

vegetation

vegetation

Sl

vegetation 0.9

vegetation 0.9
vegetation 0.4
3t
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The automated vegetation detection system proposed in
this work addresses the critical need for consistent and reliable
vegetation characterization in the diagnosis of IE. Given the
high mortality rate and severe complications associated
with IE, such as embolic events, the ability to accurately
and consistently detect vegetations is crucial. Furthermore,
the automated detection of vegetations is a step towards
automatically computing vegetation measurements, currently
essential for risk stratification and therapeutic planning.
Accurate measurement of vegetation size can help predict
embolic events, as larger vegetations are associated with a
higher risk.[5, 6] In fact, some of the indications to perform
surgery by the international guidelines[1, 2] rely on the size of
the vegetation and provide a very specific cut-off above which
a patient must be sent to surgery.

Our proposed system presents several advantages: first, it
has the potential to eliminate both intra- and inter-operator

variability in vegetation measurement, thereby enabling a
standardized assessment and supporting more consistent
clinical decision-making. Second, by providing objective
and reproducible measurements, the algorithm has the
potential to become the basis for future updates to clinical
guidelines, allowing cut-off values for management decisions
to be based on standardized and quantifiable parameters.
Third, this system may establish the foundation for a novel
advanced vegetation characterization, incorporating features
such as motion dynamics (e.g., acceleration, velocity and
trajectory) and morphological features (shape, density and
others) that may offer new insights into disease behavior and
prognosis. And fourth, given its diagnostic performance, the
tool is suitable for integration into clinical workflows as a
decision support system, particularly in smaller healthcare
centers and other settings with limited access to expert
imaging interpretation.
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The proposed system is designed to detect vegetations at
the frame level; however, to determine whether a suspicious
mass is a vegetation, clinicians usually review the entire
video to assess its motion, which makes it reasonable
to expect that an Al model incorporating a temporal
component could perform better. This approach would face
several challenges. Labeling becomes extremely demanding
in models that require all frames containing the object to
be annotated, as unannotated frames may be interpreted as
negative cases. This is not only an exponential increase in
the labeling workload, but often infeasible, since during
parts of the cardiac cycle when vegetations are partially
obscured, it is difficult to distinguish them from cardiac
valves or abscesses. In addition, it would also imply a risk
of underfitting, since the complexity of the input would
increase (video sequence vs. frame) while the number of
available samples would decrease exponentially (while
we could extract 50,172 vegetation frames from our 329
patients, only 2517 cine loops would be available for video
training).

Therefore, our model was designed to detect vegetations
on a frame-by-frame basis, followed by a temporal evaluation
of these detections, providing a more efficient and practical
solution.

The number of frames varies substantially across stud-
ies, such that patients with fewer frames are more suscep-
tible to false detections, as each misclassification exerts a
disproportionately greater influence on the overall results.
This limitation is particularly evident in older ultrasound
examinations acquired with earlier-generation systems,
which are typically characterized by lower temporal reso-
lution and reduced image quality. Despite these consid-
erations, no exclusion criteria based on frame count or
number of loops were imposed, given that short loops are
frequently observed in routine clinical practice.

A key limitation of the current system is that it
is designed to operate within a clinical context of
suspected endocarditis. Consequently, the model was
not specifically trained to differentiate vegetations from
other intracardiac masses. This means anomalies such
as Lambl’s excrescences, thrombus, or ruptured chordae
tendineae may currently be misidentified as vegetations.
Future developments should address this by extending the
training dataset to include a broader range of intracardiac
formations, enabling the system to accurately distinguish
these structures and expand its clinical applicability. Other
limitations include the exclusion of right-sided IE from
the population and the relatively small number of patients
with prosthetic valves, particularly mechanical. The system
would need to be trained with additional datasets focused
on these populations before being fully applicable in these
contexts, particularly in the latter case since artifacts caused
by the prosthesis may confound the algorithm.

@ Springer

Conclusions

The results of this study demonstrate the effectiveness of
a new automated vegetation detection algorithm in TEE
images. The algorithm achieved high-performance metrics
in detecting and locating vegetations down to the frame
level and diagnosing the presence of vegetations in TEE
video sequences at the patient level. This system could be
directly employed to assist in the assessment of vegetation
presence, but, more importantly, it may serve as the
foundation for future advanced image-based characterization
of vegetations, computed from programmatically derived (i.e.,
operator-independent) parameters such as motion velocity,
trajectory, and morphological features. This can be extremely
useful to reduce inter-operator variability in the vegetation
measurement task, often subject to significant variability
among operators, and to identify new advanced imaging
biomarkers for personalized risk characterization and disease
management.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10278-025-01722-0.
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